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* Objective of the framework: identify a function which associate X(z) to Y(z)

» 2 stages
* Supervised learning: train a function f that predicts Y(z) using only X(z)

* Attribution techniques: using gradient saliency to calculate the derivative of f(X(z))

with respect to X(2)
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Fig 1, Davies et al.

Supervised learning:

¢ Training data is labelled and we seek to predict outputs given inputs
* Classification - where outputs are discrete

* Regression - where the outputs are real-valued

* Contribution of this stage: learning non-linear functions

« If 7is more accurate than would be expected by chance, there exists such a relationship between X(z) and Y(z)

Attribution techniques:
« Quantify component of X(z) that 7 is sensitive to

« Calculate how much f changes in predictions of Y(z) given small changes in X(z)
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* Application in Topology

z: Knot X(2): Geometric invariants Y(2): Algebraic invariants
Volume Chern-Simons Meridional translation Signature Jones polynomial
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We hypothesized that there was a previously undiscovered relationship between the geometric and algebraic

invariants.

Fig 2, Davies et al.

Invariants: geometric or numerical quantities that are the same for two equivalent knots.

Notable example conjecture: the hyperbolic volume of a knot (geometric invariant) should be encoded within the asymptotic behaviour of its coloured Jones polynomials (algebraic invariants).
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X(z): Geometric invariants

* Three most relevant invariants: Re(y), Im(u), A
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 Natural slope: slope(K) = Re(Mp) linearly related to o(K) e
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* Insights: the signature controls the non-hyperbolic Dehn T ol T s

surgeries on the knot and that the natural slope controls :

the genus of surfaces in R4+ whose boundary is the knot.

Meridional translation (real)

Fig 3, Davies et al.

meridional translation p and the longitudinal translation A
Dehn surgeries : diff ways of filling in a loop of the meridian
Inj: injectivity radius

Complement 3D space - the knot




