AlphaKnot: server to analyze entanglement in structures predicted by AlphaFold methods

- Objective: Detect knots in AlphaFold predicted proteins
- Novelty: considers pLDDT
- Workflow: PDB -> Cα atoms -> HOMFLY-PT (1000 random closings) -> Alexander polynomial for knot map

HOMFLY-PT

- Invariant
- generalizes Alexander and Jones
- Skein relation

Vs Alexander: computationally less consuming

AlphaKnot: server to analyze entanglement in structures predicted by AlphaFold methods

- Findings:
 - Case 1: structures with high pLDDT may have unlikely non-trivial topologies
 - Case 2: structures with strictly conserved non-trivial topologies from different organisms
 - Case 3: topology is conserved only between some homological proteins

Fig 4, Niemyska et al.

HOMFLY-PT

- Invariant
- generalizes Alexander and Jones

AlphaKnot: server to analyze entanglement in structures predicted by AlphaFold methods

Insights:

- Topology is conserved between proteins with the same function but low sequence similarity
- Most knotted proteins are enzymes with an active site in the knot

AlphaKnot Database (entries grouped by knot type): https://alphaknot.cent.uw.edu.pl/searchdb/?all=False&cats=Knot&organisms=CAEEL.DANRE,DROME,HUMAN,MOUSE,RAT,ECOLI.MYCTU,STAA8,CANAL,SCHPO,YEAST,ARATH,MAIZE,ORYSJ,SOYBN,DICDI,LEIIN,METJA,PLAF7,TRYCC